感激肖恩e学友,太棒了……等自家上电脑就放链接✧*。٩(ˊωˋ*)و✧*。
第一集 试播集 Pilot
交代背景……智力障碍外孙和不错怪人的异世历险,“你还年轻,秋菊还紧致有弹性”,“我们将旅游整个宇宙!”
第二集 割草狗 Lawnmower Dog (12/09/2013) – Lawnmower Man (1992) 割草者
盗梦空间,狗球崛起。小编信任灵魂是等价的,那么“存在智慧”是一件多么失之偏颇的事情呢。
其三集 人体公园 Anatomy Park (12/16/二〇一三) – Jurassic Park (1995)
侏罗纪公园
看血浆看到麻木……
第五集 奈特.沙马莲之外星人 M. Night Shaym-Aliens! (01/13/2014) – Signs
(2002) 天兆

那篇文章的重庆大学指标是分析《瑞克和莫蒂》中所借鉴和利用的科学幻想创新意识与思想,包罗对有的经典文章的致敬和影射。挖掘散落在片中的彩蛋不是本文重点,但也会顺手提及一些比较有意思的。

乐乎云音乐歌单

微型总结机手提式有线电话机都得以用的,你能够平昔收藏到乐乎云音乐中。
歌单1: 笔者最欢欣的10首
http://music.163.com/\#/playlist/2162614633/291691571?userid=291691571
歌单2:其他60首
http://music.163.com/\#/playlist/517095309/291691571?userid=291691571

取有法,舍有道,坚定不移必有获取
AI – 人工智能;CV – 机器视觉;DL – 深度学习;DM – 数据挖掘;DS –
数据科学;DV – 数据可视化;IOT – 物联网;ML – 机器学习;NLP –
自然语言处理

AI – 人工智能;AOdyssey – 增强现实;CV – 机器视觉;DL – 深度学习;DM –
数据挖掘;DS – 数据科学;DV – 数据可视化;IOT – 物联网;ML –
机器学习;NLP – 自然语言处理

第五集 Meseeks与毁灭 Meseeks and Destroy (01/20/2014) – Seek and Destory
(2010) OR Search and Destroy (1992) OR Search and Destroy (1979) 狙击手
(猜的)

《瑞克和莫蒂》起点于Justin·Roland的一部动画短片《The Real Animated
Adventures of Doc and
Mharti》。片中Doc和Mharti的人设灵感则取自《回到今后》三部曲中的大学生和骨干马丁。短片在内容设计和思考内涵上与后来的《瑞克和莫蒂》相去甚远,可是在恶趣味方面倒是有过之:Doc用他的发明帮Mharti化解生存中的麻烦,代价是Mharti得帮她口交。

总体歌单

只可以在微机上看、手提式无线电话机上看不住,手提式有线电话机打开会提醒您下载新浪云app。

怎样高效创制你的歌单?点击下边包车型地铁链接会自动在网易云音乐中开辟对应的歌曲,你点击收藏到歌单就足以了。
0
christmas_in_my_heart
1
burning
2
BABY
3
You_Belong_with_Me
4
Bleeding_Love
5
she
6
The_Show
7
valder_fields
8
TiK_ToK
9
God_Is_a_Girl
10
Stand
11
nothing_in_the_world
12
Better_In_Time
13
Poker_Face
14
Rolling_In_the_Deep
15
a_Place_Nearby
16
Free_Loop
17
You_Are_My_Everything
18
Bye_Bye_Bye
19
Bye_Bye
20
Never_Say_Never
21
Say_Hello
22
i_say_yeah
23
always_getting_over_you
24
Apologize
25
Breathless
26
Traveling_Light
27
Because_You_Live
28
speak_now
29
Ce_Frumoasa_E_Iubirea
30
Cry_on_my_shoulder
31
Everytime
32
Waka_Waka
33
Everybody
34
We_Are_One
35
Because_of_you
36
Our_Song
37
Try_Try_Try
38
Imagine_Me_Without_You
39
Viva_la_Vida
40
Every_Moment_Of_My_Life
41
Just_Dance
42
My_Oh_My
43
Never_Had_A_Dream_Come_True
44
A_New_Day_Has_Come
45
I_Need_You
46
Wake_Me_Up_When_September_Ends
47
American_Idiot
48
Eversleeping
49
Last_Christmas
50
Lullabye
51
You_re_Beautiful
52
beautiful_in_white
53
Firework
54
Fairy_Tale
55
beautiful_day
56
Do_You_Remember
57
Because_Of_You
58
If_I_Were_You
59
I_Still_Believe
60
Sunshine_In_The_Rain
61
Blow_Me_A_Kiss
62
when_you_believe
63
Cross_Every_River
64
Melt_The_Snow
65
Oops_jaime_pas_langlais
66
Brave
67
memories
68
Say_Goodbye
69
Dragostea_din_tei
70
Larger_Than_Life
71
The_Tide_Is_High
72
Maybe
73
Fall
74
La_La_Love_On_My_Mind
75
Tomorrow
76
Without_You
77
Down
78
Love_the_Way_You_Lie
79
No_Promises
80
heal_the_world
81
Nemo
82
Tell_Me_Why
83
moonlight_shadow
84
Just_Want_You_To_Know
85
Love_The_Way_You_Lie
86
again_and_again
87
I_Love_You_Forever
88
Sunny_Came_Home
89
21_Guns
90
Ring_My_Bells
91
Lost_without_you
92
Far_Away
93
makes_me_wonder
94
1973
95
Umbrella
96
Angel
97
May_It_Be
98
Life_for_rent
99
That_s_Why_(You_Go_Away)
100
En_Dag_Tilbage
101
Dont_push_me
102
Beautiful_Soul
103
Vincent
104
Mr._Kill
105
Low
106
Do_Something
107
In_My_Head
108
Close_to_You
109
Toxic
110
Love_Me
111
Break_Your_Heart
112
My_Bloody_Valentine
113
Do_You_Know
114
Like_A_Bird
115
Lucky_Star
116
The_Magic_Key
117
She_Will_Be_Loved
118
Take_A_Bow
119
Amarantine
120
Disguise
121
Breakaway
122
If_I_Die_Young
123
Just_a_Dream
124
So_sick
125
somewhere_only_we_know
126
Home
127
I_Feel_Good
128
Rude_Boy
129
One_Step_At_A_Time
130
California
365bet亚洲官方投注:爱可可老师今日视野,瑞克和莫蒂。131
Si_Seulement
132
chain_hang_low
133
To_Be_With_You
134
One_Time
135
Love_You_Lately
136
When_I_Wake_Up
137
Whole_World_Around
138
Behind_These_Hazel_Eyes
139
if_i_were_a_boy
140
Catch_Me_If_I_Fall
141
Wavin_Flag
142
emerald_sword
143
Eenie_Meenie
144
too_little_too_late
145
Celebration
146
Stupid_In_Love
147
beep
148
Remember_When
149
Cry
150
Your_Love_Is_My_Drug
151
That_s_Not_My_Name
152
Your_Love_Is_a_Lie
153
When_You_Told_Me_You_Loved_Me
154
Can_t_Stop_Won_t_Stop
155
Someday
156
I_Love_You
157
Another_Day
158
End_Of_May
159
So_Yesterday
160
Love_Is_Color_Blind
161
Replay
162
Kissin_U
163
mad_world
164
Smile
165
Brief_And_Beautiful
166
Knocking_on_heavens_door
167
Love_You_Like_a_Love_Song
168
Me_Faltas_Tu
169
Ich_Will
170
Family_Affair
171
Best_Days
172
Forever_In_My_Life
173
Little_Bit_Better
174
Pocketful_Of_Sunshine
175
Stand_By_Me
176
Even_Heaven_Cries
177
we_will_fly
178
greatest
179
She_Wolf
180
Supermassive_Black_Hole
181
Favorite_Girl
182
Take_A_Bow
183
California_Gurls(feat._Snoop_Dogg)
184
From_Sarah_With_Love
185
Smile
186
Don_t_Push_Me
187
welcome_to_my_life
188
Inside_Out
189
Like_A_G6
190
All_good_things
191
Be_With_You
192
Hot
193
Two
194
If_You_Can_Afford_Me
195
Hello_Seattle
196
Oh_Aaron
197
Say_Something_Anyway
198
Sugar_rush
199
Yesterday
200
I_m_Just_A_Little_Bit_Shy
201
Fire_Burning
202
All_That_I_Want
203
who_knows
204
i_will_be
205
wait_til_you_here_from_you
205
wait_til_you_here_from_you
206
Littlest_Things
207
What_You_Got
208
Entre_Toi_Et_Moi
209
Communication
210
She_s_The_One
211
Hypnotized
212
Where_do_You_Go
213
Show_Me_The_Meaning_Of_Being_Lonely
214
Show_Me_What_It_Means
215
I_Decided
216
Where_s_My_love
217
4_Minutes
218
Fergalicious
219
play_with_fire
220
Sober
221
Heyah_Mama
222
You_Never_Fail_Me
223
Save_You
224
We_ll_Be_Alright
225
You_Belong_To_Me
226
Church
227
vendredi
228
Gimme_More
229
Come_Clean
230
Cry_On_My_Shoulder
231
Keep_You_Much_Longer
232
That_Night
233
Long_Shot
234
Show_You_How_a_Gangsta_Do
235
My_Love
236
The_Loneliness
237
4_In_The_Morning
238
L.O.V.E.
239
Cinderella
240
The_Technicolor_Phase
241
The_New_Diana
242
This_Is_The_New_Shit
243
Sheila_She_Loves_You
244
With_Him
245
Lonely
246
Pop
247
trouble_sleeping
248
Not_Enough
249
Up
250
Dreams_Come_True
251
Such_A_Fool
252
Roc
253
Break_You
254
Who_Says
255
Could_i_have_this_kiss_forever
256
Bottom_Of_The_Ocean
257
Believe_Me_(featuring_Bobo_and_Styles_of_Beyond)
258
Hey,_Soul_Sister
259
Cry_Me_Out
260
Fairy_tale_-_Toni_braxton
261
Here_With_Me
262
Ou_Es-tu
263
Lovebug
264
Turn_It_Up
265
Hate_that_I_Love_You
266
Eternal_Flame
267
So_Listen(feat._T-Pain)
268
Jenny_From_The_Block
269
Tainted_Love
270
Tier
271
Skin_Deep
272
Love_Explains_It_All
273
Still_In_Love_With_You
274
So,_I_Guess_This_Is_Goodbye
275
Cinderella
276
Pieces
277
What_U_See_(Is_What_U_Get)
278
Get_It_Out_Me
279
The_Reason
280
elevation
281
footprints_on_my_heart
282
Obsessed
283
Hanging_On

  • [AI]AI ultimately aiming toward taking over the Academy Awards in
    Showbiz – AI
    Trends
  • [AI]Companies Looking To Adopt AI Need To Reach Full Data
    Maturity First Or It Will Be Impossible – SAT Press
    Releases
  • [AI]EU’s Right to Explanation: A Harmful Restriction on
    Artificial
    Intelligence
  • [AI]Generative Adversarial
    Networks
  • [AI]How Meta’s AI Serves The Scientific
    Ecosystem.
  • [AI]The Motley
    Fool
  • [AI]Top 10 LinkedIn Groups for Business Intelligence
    Professionals
  • [CV]Toronto teen uses app to give visually-impaired a new look at
    the world | Toronto
    Star
  • [DL]”Issues involving convoluted #neuralnetworks CNNs #AI
    #deeplearning #DL #machinelearning #ML #tech
    https
  • [DL]140 Machine Learning
    Formulas
  • [DL]41 Key Machine Learning Interview Questions with
    Answers
  • [DL]6 areas of AI and Machine Learning to watch
    closely
  • [DL]A deep learning algorithm outperforms some board-certified
    dermatologists in diagnosis of skin
    cancer
  • [DL]A Plethora of Microsoft Training Options on AI, Machine
    Learning & Data Science, including
    MOOCs
  • [DL]AI is nearly as good as humans at identifying skin
    cancer
  • [DL]AI Makes 3D Models From Photos | Two Minute
    Papers
  • [DL]AI system detects skin cancer with expert
    accuracy
  • [DL]AI Ushers in a New Era of Business and
    Tech
  • [DL]Answered Prayers for High Frequency Traders? Latency Cut to
    20
    Nanoseconds
  • [DL]Apache Hadoop Competitive
    Features
  • [DL]Artificial Intelligence and Speech Recognition for
    Chatbots
  • [DL]Artificial intelligence can spot skin cancer as well as a
    trained
    doctor
  • [DL]Artificial intelligence touted as key to growing Canada’s
    economy
  • [DL]Artificial Intelligence’s Next Big Step: Reinforcement
    Learning – The New
    Stack
  • [DL]Bad Data + Good Models = Bad
    Results
  • [DL]BAH-NVIDIA DSB Team | The Data Science Bowl | Passion.
    Curiosity. Purpose. | Presented by Booz Allen and
    Kaggle
  • [DL]Blog – The “Something Something” Video
    Dataset
  • [DL]Can AI End Checkout Lines? | NVIDIA
    Blog
  • [DL]Career Alert, January
    20
  • [DL]Deep learning for natural language understanding – Strata +
    Hadoop World in San Jose
    2017
  • [DL]Do You Want To Learn More About Big Data? with @VanRijmenam •
    Blog
    Marketeer
  • [DL]Dr. GP Pulipaka on
    Twitter
  • [DL]floydhub/dl-docker
  • [DL]Geometry Meets Deep Learning ECCV 2016
    Workshop
  • [DL]Global Bigdata
    Conference
  • [DL]Google’s AI software is learning to make AI
    software
  • [DL]Hadoop Projects Competitive
    Features
  • [DL]IBM brings Google’s AI tools to its powerful
    computers
  • [DL]IBM’s machine learning server adds
    TensorFlow
  • [DL]Liberals see artificial intelligence as a path to reverse
    stalled
    growth
  • [DL]Making Sense of IIoT
    Analytics
  • [DL]Melanie Warrick at Strata + Hadoop World in San Jose
    2017
  • [DL]MIT Creates Donald Trump Bot Using ‘Deep Learning,’ Irony
    Abounds
  • [DL]Ontario Public Service
    Careers
  • [DL]Recommenders: Packaged Solutions or Home
    Grown
  • [DL]Saving whales with deep
    learning
  • [DL]The key to building deep learning solutions for large
    enterprises
  • [DL]This Week in Machine Learning, 20 January 2017 – Udacity Inc
    – Medium – Artificial
    Intelligence
  • [DL]TWiML Talk #11 – Hilary Mason – Building AI Products – This
    Week in Machine Learning & AI
    Podcast
  • [DL]WAFR
    2016
  • [DL]You say artifical intelligence, I say deep
    learning
  • [DM]AutoAlert to Introduce Latest Technology at NADA100 in New
    Orleans January 26-29 – SAT Press
    Releases
  • [DM]Big Data Is Changing the Way Startups Are Approaching
    Marketing |
    7wData
  • [DM]HealthCare Industry’s Savior: Using the Benford’s Law (The
    Law of First Digit) to Debunk the
    Fraudsters
  • [DM]Open Source Business Intelligence Tips and Tricks in January
    2017
  • [DM]Predicting Baseball Fanduel
    Points
  • [DM]Statoo Consulting, Switzerland
    (statoo.com/dm/)
  • [DM]Technology Trends & Engineering Predictions For
    2017
  • [DM]Top 238 Business Intelligence Tools – Predictive Analytics
    Today
  • [DS]Alooma Enables the Real-Time Enterprise with Data Pipelines
    to Cloud
    Warehouses
  • [DS]Julia for Data Science
    Book
  • [DS]Mind the skills gap – Information
    Age
  • [DS]Regis University MS in Data Science Now Offered On
    Campus
  • [DS]Southern Methodist University’s Online M.S. in Data
    Science
  • [DS]What is machine
    learning?
  • [DV]3 Interactive Drug Discovery
    Dashboards
  • [DV]A Data Driven Exploration of Kung Fu
    Films
  • [DV]Creative Data Visualisation Techniques Düsseldorf 2017 //
    beyond
    tellerrand
  • [DV]Data and Intuition in Hospital
    Design
  • [DV]Introduction to Amazon Athena – Analytics Industry
    Blog
  • [DV]Mapping The Collective Experience Of A
    City
  • [DV]The Golden Age of Statistical
    Graphics
  • [DV]The Odds of Going Pro in Sports [OC] •
    /r/dataisbeautiful
  • [IoT]3D Printing a NeoPixel LED Bracelet! #3DThursday
    #3DPrinting
  • [IoT]CES 2017: Cultivating a New IoT Cybersecurity Crop – All The
    Internet Of
    Things
  • [IoT]ClearBlade Rated as Leading Vendor in MachNation’s 2016 IoT
    Application Enablement Platform … – All The Internet Of
    Things
  • [IoT]MetTel Taps Verizon Wireless Veteran Andrew Nash to Lead
    Internet of Things Division – All The Internet Of
    Things
  • [IoT]MIT Enterprise Forum of Cambridge Connected Things
    Conference to Explore Accelerating the Adoption and Impact of
    Internet of
    Things
  • [IoT]Rob van Kranenburg: The Internet of Things. A critique of
    ambient technology and the all-seeing network of
    RFID
  • [IoT]Smartwatch market boosted by basic hybrid and analogue
    watches, says Juniper Research –
    IPv6.net
  • [IoT]Thanks for voting us top designer in 2016! @pinshape
    #3DThursday
    #3DPrinting
  • [ML]’Security and fraud risks drive merchant payment
    decisions’
  • [ML]11 Important Model Evaluation Techniques Everyone Should Know
    – Data Science
    Central
  • [ML]24763BR Software Architect- Hadoop Senior Professional Job
    Description The Enterprise Data Hub & Cloud Analytics Software
    Architect is responsible for architecting and developing Cerner’s
    enterprise data hub and cloud analytics
    applications
  • [ML]4 Smart Ways to Keep Up With Google in
    2017
  • [ML]5 best TED talks on Data analytics for business
    leaders
  • [ML]A #Fullstacker’s
    Daily
  • [ML]A Harmful Restriction on Artificial
    Intelligence
  • [ML]A Machine Learning Approach to Log Analytics – DZone Big
    Data
  • [ML]Advanced In-Database Analytics – DZone Big
    Data
  • [ML]AI as the new UI – Accenture Tech
    Vision
  • [ML]Alphabet to sell Terra Bella satellite unit to Planet, also
    talked with Climate
    Corp.
  • [ML]Artificial Intelligence Car Race
    Event
  • [ML]Big Data: Utilizing Machine-Learning Capabilities –
    Statistica
  • [ML]Building a recommendation system in Python – as easy as
    1-2-3!
  • [ML]bulletphysics/bullet3
  • [ML]Communiqués de presse :
    2017
  • [ML]Cylance Chief Research Officer Jon Miller to Lead Reddit
    AMA
  • [ML]D-Wave Systems has sold its first 2,000-qubit quantum
    computer for $15M –
    SiliconANGLE
  • [ML]Data Science and Machine Learning with Python – Hands
    On!
  • [ML]Demand Side Management and Data Science Expert in Dubai,
    United Arab
    Emirates
  • [ML]Dermatologist-level classification of skin cancer with deep
    neural
    networks
  • [ML]dustinvtran/ml-videos
  • [ML]Feature hashing for scalable machine
    learning
  • [ML]Five Myths of Artificial Intelligence – PR
    News
  • [ML]Forbes
    Welcome
  • [ML]Genevieve Bell on moving from human-computer interactions to
    human-computer
    relationships
  • [ML]Genome-Wide Genetic Analysis Using Genetic Programming: The
    Critical
    N
  • [ML]Getting off the data
    treadmill
  • [ML]Going beyond collaboration to achieve data-driven
    success
  • [ML]Google took down 1.7 billion bad ads in 2016, double the
    previous year –
    SiliconANGLE
  • [ML]Grappling with Real-Time Analytics
    (Ep. 14)
  • [ML]Great New Case Study – Bringing Clarity to Data Science and
    Analytic Projects – Decision Management
    Solutions
  • [ML]Hadoop
    Services
  • [ML]Hadoop
    Software
  • [ML]Hart Leverages DataStax
    Enterprise
  • [ML]Hooked Up by IOT Juniors’ Rib-Knit Zip-Back Sweater (XXL,
    Black)
  • [ML]How to use artificial intelligence for business
    benefit
  • [ML]IBM to support Google-developed TensorFlow machine learning
    library –
    SiliconANGLE
  • [ML]Inside the Washington Post’s popularity prediction
    experiment
  • [ML]IoT Leaders and Market
    Opportunities
  • [ML]KenSci raises $8.5M to predict health needs with machine
    learning –
    SiliconANGLE
  • [ML]KeystoneML: Optimizing Pipelines for Large-Scale Advanced
    Analytics
  • [ML]Like a gym membership, data has no value unless you use
    it
  • [ML]Machine behaviors that threaten enterprise
    security
  • [ML]Machine Learning and the Startup
    World
  • [ML]Machine Trading: Deploying Computer Algorithms to Conquer the
    Markets (Wiley
    Trading)
  • [ML]Machine-learning to inspire Singapore metro
    buildout
  • [ML]Nest looks to enhance AI and machine
    learning
  • [ML]Pharmaceutical giant partners to push
    analytics
  • [ML]R&D to Product Pipeline Using Apache Spark in
    AdTech
  • [ML]Safeguard Your Company Against
    Cyber-Attacks
  • [ML]SAPVoice: How High-Tech Investments Make Smart
    Cities
  • [ML]SAPVoice: Make Sure Your Hiring Algorithms Are Legal: Four
    Machine Learning Questions To
    Ask
  • [ML]Sneaks — A Sneak Peek into the Future of the Experience
    Business at Adobe Summit 2017 |
    Adobe
  • [ML]State of JavaScript
    2017
  • [ML]Statistical Modeling, Causal Inference, and Social
    Science
  • [ML]Tech Jobs for Tech
    People
  • [ML]The Future Is Now: Disruptive Technology Trends in
    2017
  • [ML]The Rise of Cognitive Work
    Redesign
  • [ML]This Chinese media giant is using machine learning to go
    after Facebook’s
    lunch
  • [ML]Try Apache Spark 2.1 & Zeppelin in Hortonworks Data Cloud –
    Hortonworks
  • [ML]Turning Research Data into Scientific Discoveries – SAT Press
    Releases
  • [ML]UC Berkeley launches lab to work on real-time
    intelligence
  • [ML]Understanding Deep Learning Models in
    NLP
  • [ML]Why bots are not weird
    anymore
  • [ML]Why CEOs must lead big data initiatives –
    TechRepublic
  • [ML]Why Social Media Analytics Cannot Rely On Machine Learning |
    Articles | Big
    Data
  • [ML]WorkFusion Raises $35 Million to Scale AI-powered Automation
    within Enterprise
    Operations
  • [ML]Your iPhone Already Uses Artificial Intelligence, But it’s
    Just the
    Beginning
  • [ML]Your smartphone could soon be the first step for diagnosing
    skin
    cancer
  • [NLP]10 AI companies to watch out for in
    2017
  • [NLP]5 things you need to know about A.I.: Cognitive, neural and
    deep, oh
    my!
  • [NLP]Extract Insights from Text, the Trusted Analytics
    Way
  • [NLP]Sentiment Analysis of Twitter Posts on Chennai Floods using
    Python
  • [NLP]The 9 Deep Learning Papers You Need To Know About
    &#40&#85nderstanding C&#78&#78s Part
    3&#41
  • [NLP]The next disruption: pervasive voice-first at work –
    Information
    Age
  • [AI]Consumers to reap real benefits of AI – All The Internet Of
    Things
  • [AI]How Big Tech Is Profiting by Selling
    AI-as-a-Service
  • [AI]Researchers use AI to improve accuracy of gene editing with
    CRISPR
  • [AI]Top five highest paying jobs in 2018 «
    Vocation.AI
  • [AI]Udacity and Baidu Announce Groundbreaking Self-Driving Car
    Partnership at CES |
    Udacity
  • [AI]When Disciplines
    Disagree
  • [AI]Why Every Entrepreneur Should Get a Personal Assistant Gadget
    ?
  • [AR]10 AR+VR Trends To Watch Out for at #CES2018 – Super
    Ventures Blog –
    Medium
  • [AR]Another Dose of Augmented/Virtual Reality at CES
    2018
  • [AR]AWE USA 2017 –
    Bizzabo
  • [AR]CES 2018 Day 0 Roundup – Vive Pro, Intel’s Tiny VR PC,
    Shapeshifting Controllers, &
    More
  • [AR]Google And Lenovo Unveil The First High-Quality Stand-Alone
    VR
    Headset
  • [AR]Google Reveal Details on Standalone Daydream
    Headset
  • [AR]Humaneyes Technologies Reveals The Vuze+ VR Camera At CES
    2018
  • [AR]Lenovo Unveils Mirage Solo Daydream Standalone VR
    Headset
  • [AR]These AR glasses solve some of Google Glass’s biggest
    problems
  • [AR]Webinar | What’s Next for Enterprise AR in 2018 •
    r/augmentedreality
  • [CV]Building the ‘AR-Cloud’: Part One – Edward Miller –
    Medium
  • [CV]Street-level imagery, powered by collaboration and computer
    vision
  • [DL]10 Enterprise Machine Learning Predictions for
    2018
  • [DL]5 AI trends to watch in
    2018
  • [DL][1801.03149] An overview of deep learning based methods for
    unsupervised and semi-supervised anomaly detection in
    videos
  • [DL]A good year for Artificial
    Intelligence
  • [DL]A methodology for solving problems with DataScience for
    Internet of Things – Part
    One
  • [DL]A Python program for multivariate missing-data imputation
    that works on large datasets!? – Statistical Modeling, Causal
    Inference, and Social
    Science
  • [DL]aibo, Black Mirror, and Killer Dog Robots – DZone
    IoT
  • [DL]Artificial Intelligence: Dream vs. Nightmare. Exploring a
    Future Fashioned by
    AI
  • [DL]AWS CloudTrail integration is now available in Amazon
    SageMaker | Amazon Web
    Services
  • [DL]bircatmcri/bigNN
  • [DL]Crowdsourcing Engineer — Jobs — Allen Institute for
    Artificial
    Intelligence
  • [DL]Deep Image Prior | Two Minute Papers
    #219
  • [DL]Deep Learning & AI Roadshow
    2018
  • [DL]Deep Learning Summit, San Francisco,
    2018
  • [DL]Democratizing Artificial Intelligence, Deep Learning, Machine
    Learning with Dell EMC Ready
    Solutions
  • [DL]Enhancing motor sports viewing experience with fine-grained
    object detection – Intel
    AI
  • [DL]From Explaining and Harnessing Adversarial Examples by
    Goodfellow et
    al
  • [DL]Global Deep Learning System Market by Players: Alphabet
    Inc.,Facebook,
    Nvidia
  • [DL]How Gartner believes AI will transform smartphones | Tahawul
    Tech
  • [DL]How to Develop an N-gram Multichannel Convolutional Neural
    Network for Sentiment Analysis – Machine Learning
    Mastery
  • [DL]How to Speak Like a Data Center Geek: Artificial
    Intelligence
  • [DL]How transparent is your AI? And are ‘black box’ systems
    better?
  • [DL]How we’re using machine learning to score leads in Google
    Sheets – part 1 –
    Zailab
  • [DL]HyTruongSon/GraphFlow
  • [DL]I am not a real data
    scientist
  • [DL]Information and Data Sciences Researcher – Microsoft
    Research
  • [DL]Introducing the CVPR 2018 Learned Image Compression
    Challenge
  • [DL]kmkolasinski/deep-learning-notes
  • [DL]Machine Learning
    101
  • [DL]Machine Learning vs. Deep Learning: In Apps and
    Business
  • [DL]Natural Language Processing with Deep
    Learning
  • [DL]Neural Style Transfer for Musical
    Melodies
  • [DL]Node.js + face-recognition.js : Simple and Robust Face
    Recognition using Deep
    Learning
  • [DL]NVIDIA swings for the AI fences |
    ZDNet
  • [DL]On doing PhD with Kyunghyun
    Cho
  • [DL]Picking Loss Functions – A comparison between MSE, Cross
    Entropy, and Hinge
    Loss
  • [DL]Population-specific deep biomarkers of
    aging
  • [DL]Powering the US Open with artificial
    intelligence
  • [DL]Practical Machine Learning with
    R
  • [DL]Prof. Michael Osborne – The Impact of Artificial Intelligence
    on
    Jobs
  • [DL]R vs Python? No! R and Python (and something
    else)
  • [DL]Robot surgeons are stealing training opportunities from young
    doctors
  • [DL]SKIL is a tool to help you train, track and deploy Deep
    Learning models to production The Docker edition gives developers an
    easy way to train and deploy powerful deep learning models to
    production quickly and
    easily
  • [DL]The Democratization of Artificial Intelligence and Deep
    learning
  • [DL]The Faces Behind the Fashion-MNIST – Zalando Tech
    Blog
  • [DL]The five most weird and wonderful gadgets from CES
    2018
  • [DL]The Stanford Natural Language Processing
    Group
  • [DL]This Army of AI Robots Will Feed the
    World
  • [DL]Waikato/wekaDeeplearning4j
  • [DL]We need to build machine learning tools to augment machine
    learning
    engineers
  • [DL]When It Comes to Gorillas, Google Photos Remains
    Blind
  • [DL]You think it and a robot sees it: The future is here with
    mind-reading
    AI
  • [DL]Your AI Shrink Will See You
    Now
  • [DM]Analysis & Trends 2016 – 2024 –
    satPRnews
  • [DM]Data Visualization in Munich Meetup Munich
    2018
  • [DM]Implementing AI systems with Interpretability, transparency,
    and trust – O’Reilly Media Free, Live
    Events
  • [DM]Warning, Bias May Occur: Detecting Cognitive Bias in Visual
    Analytics
  • [DM]Wikimedia Research Newsletter, September 2017 – Wikimedia
    Blog
  • [DS]Advanced Analytics Market Trends Forecast Analysis by Key
    Manufacturers, Regions, Type and Application –
    satPRnews
  • [DS]Avoiding the IOT ‘Twister’ Business Strategy – InFocus Blog |
    Dell EMC
    Services
  • [DS]Data Scientist 2.0 Placements Possibilities & The Data
    Science
    Revolution
  • [DS]Data Storytelling for Business – Data Visualization Course |
    DataSeer
    Singapore
  • [DS]Data Warehouses and the Flying Car Dilemma – DZone Big
    Data
  • [DS]How to choose a data science vendor – Information
    Age
  • [DV]2016 Election
    Map
  • [DV]an incomplete list of titles that I have used over the course
    of my
    career
  • [DV]If I Ran A
    Station
  • [DV]Makeover Monday: Which characteristic preferences are most
    different with British men and
    women?
  • [DV]My first year as a data visualization
    freelancer
  • [DV]Social Decay: Illustrations by Andrei
    Lacatusu
  • [DV]SVG marker-mid on specific point on
    path
  • [DV]Tableau
    Public
  • [DV]Thompson Sampling or how I learned to love Roulette –
    Conductrics
  • [IoT]10 bad habits CIOs must break if they want to see digital
    transformation
    success
  • [IoT]BEAK Smart Home Controller – All The Internet Of
    Things
  • [IoT]Cloud ERP vendor Rootstock acquires competitor
    Kenandy
  • [IoT]Female-led Startups Look to Cryptocurrency for Funding – All
    The Internet Of
    Things
  • [IoT]LED-Lit Brain with battery holder #3DThursday
    #3DPrinting
  • [IoT]nerf gun easy reload #3DThursday #3DPrinting
    #Nerf
  • [IoT]Security resolutions 2018, CISOs and beyond – All The
    Internet Of
    Things
  • [IoT]Smartphone Holder with Cable clip #3DPrinting
    #3DThursday
  • [IoT]Telecom department aims to clear Trai recommendations by
    March end – All The Internet Of
    Things
  • [IoT]Underground Mining Equipment Market to Rise Beyond 4.29%
    CAGR to 2021 | ReportsnReports – All The Internet Of
    Things
  • [ML]3 Ways #artificialintelligence ##AI Can Save The National
    Football League – Forbes: Forbes 3 Ways #artificialintelligence
    ##AI Can Save The National Football League Forbes The trend begs
    the question: What can the league do to reverse the slide?… #AI
    #ML
  • [ML]8 fintech trends on our radar for
    2018
  • [ML][D] Can a machine learning network be constructed so that
    it can be stopped at some point and produce reliably the same
    output? •
    r/MachineLearning
  • [ML][N] Introducing the CVPR 2018 Learned Image Compression
    Challenge •
    r/MachineLearning
  • [ML][R] Expected Policy Gradients for Reinforcement Learning •
    r/MachineLearning
  • [ML][R] Matterport3DSimulator – Vision-and-Language Navigation:
    Interpreting visually-grounded navigation instructions in real
    environments •
    r/MachineLearning
  • [ML]A New Definition of Artificial General Intelligence | Mighty
    Ant
  • [ML]Addressing Large Hadron Collider Challenges by Machine
    Learning |
    Coursera
  • [ML]Amazon seeks big new office space in city – The Boston
    Globe
  • [ML]Artificial intelligence can ‘evolve’ to solve
    problems
  • [ML]Big Data Modeling and Management Systems |
    Coursera
  • [ML]Big Data Services: Capstone Project |
    Coursera
  • [ML]Big Data: The Future of Translation industry -Big Data
    Analytics
    News
  • [ML]Boffins tweak audio by 0.1% to fool speech recognition
    engines
  • [ML]Build a Modern Computer from First Principles: Nand to Tetris
    Part II (project-centered course) |
    Coursera
  • [ML]Business Intelligence Concepts, Tools, and Applications |
    Coursera
  • [ML]Business Metrics for Data-Driven Companies |
    Coursera
  • [ML]Business Technology Management |
    Coursera
  • [ML]Case studies in business analytics with ACCENTURE |
    Coursera
  • [ML]Cisco can now sniff out malware inside encrypted
    traffic
  • [ML]Command Line Tools for Genomic Data Science |
    Coursera
  • [ML]Cross-Validation for Predictive Analytics Using R –
    MilanoR
  • [ML]Crowdfunding Platform Raising $100M Fund for AI,
    Deep-Learning
  • [ML]Data contextualization continues to evolve in
    2018
  • [ML]Data Science at Scale |
    Coursera
  • [ML]DataCamp
  • [ML]Decentralized #artificialintelligence ##AI Is Coming:
    Here’s What You Need To Know – Forbes: Forbes Decentralized
    #artificialintelligence ##AI Is Coming: Here’s What You Need To
    Know Forbes Forbes #Tech Council Elite CIOs, CTOs & execs offer…
    #AI
    #ML
  • [ML]Economics of Money and Banking |
    Coursera
  • [ML]Economists grapple with the future of the labour
    market
  • [ML]Elegant Techniques to Produce Improved Machine Learning
    Results
  • [ML]Essential Cloud Infrastructure: Foundation |
    Coursera
  • [ML]Executive Data Science Capstone |
    Coursera
  • [ML]Feature engineering for building clustering
    models
  • [ML]Google Cloud Platform Big Data and Machine Learning
    Fundamentals |
    Coursera
  • [ML]How Is Artificial Intelligence Delivering Personalised
    Content Experiences For
    Consumers?
  • [ML]How machine learning in G Suite makes people more
    productive
  • [ML]Importance of R Language -Big Data Analytics
    News
  • [ML]Inferential and Predictive Statistics for Business |
    Coursera
  • [ML]Inspiring Leadership through Emotional Intelligence |
    Coursera
  • [ML]Internet of Things & Augmented Reality Emerging Technologies
    |
    Coursera
  • [ML]Interpretable Machine
    Learning
  • [ML]Leveraging Unstructured Data with Cloud Dataproc on Google
    Cloud Platform |
    Coursera
  • [ML]Machine Design Part I |
    Coursera
  • [ML]Machine Language For
    Beginners
  • [ML]Machine Learning Engineer – Front Office Seat «
    Vocation.AI
  • [ML]Machine Learning Engineer, Big Data, Scala, Spark OR Flink «
    Vocation.AI
  • [ML]Machine Learning Specialist Job in Canberra 2601, Australian
    Capital Territory Australia «
    Vocation.AI
  • [ML]Machine Learning: Clustering & Retrieval |
    Coursera
  • [ML]Make A Robot Your Partner In Crime In 2018 «
    Vocation.AI
  • [ML]Making Data Simple: Machine Learning for
    Dummies
  • [ML]Mastering the Software Engineering Interview |
    Coursera
  • [ML]Matrix Factorization and Advanced Techniques |
    Coursera
  • [ML]McKinsey & Company on
    Twitter
  • [ML]Network Analysis in Systems Biology |
    Coursera
  • [ML]Neural Networks for Machine Learning |
    Coursera
  • [ML]OpenAI – Recruiting
    Coordinator
  • [ML]Opinion | Robots Can’t Vote, but They Helped Elect
    Trump
  • [ML]Practical Predictive Analytics: Models and Methods |
    Coursera
  • [ML]Predictive Modeling and Analytics |
    Coursera
  • [ML]Problem-Solving Skills for University Success |
    Coursera
  • [ML]Resource
  • [ML]Robotics: Aerial Robotics |
    Coursera
  • [ML]Robotics: Estimation and Learning |
    Coursera
  • [ML]Robots Can’t Vote, but They Helped Elect Trump «
    Vocation.AI
  • [ML]Sales Strategy |
    Coursera
  • [ML]Senior Python Engineer (Django and Machine Learning) Job in
    Cambridge, MA «
    Vocation.AI
  • [ML]Serverless Data Analysis with Google BigQuery and Cloud
    Dataflow |
    Coursera
  • [ML]Serverless Machine Learning with Tensorflow on Google Cloud
    Platform |
    Coursera
  • [ML]Social Media Manager for Machine Learning Podcast «
    Vocation.AI
  • [ML]TensorFlow for
    R
  • [ML]The Importance of Listening |
    Coursera
  • [ML]Unbabel raises $23 million from Microsoft, Salesforce, others
    to grow its machine-human translation
    platform
  • [ML]What Is a Data Science Workbench and Why Do Data Scientists
    Need One? – DZone Big
    Data
  • [ML]Who Cares if Unsupervised Machine Learning is Supervised
    Learning in
    Disguise?
  • [NLP]A Step in the Right Direction for
    NLP
  • [NLP]Speaker profile – Min-Yen
    Kan
  • [NLP]The Reverse Luddite
    Fallacy

第六集 9号Rick合剂 Rick Potion #9 (0四分之二7/二〇一一) – Love Potion No. 9
(1992) 罗曼蒂克女生香
超神的一集。笔者就给同学看了这一集,她已经中毒了。
世界变得太他妈快了,一切都以天意,一切抉择偷偷都有接纳,当你真正了解机会费用,才能说什么样叫做权衡利弊。
嗯,不能团结只好共苦啊。Beth, 你平常感到多不安呢。
第九集 Gazorpazorp培育记 Raising Gazorpazorp (03/10/二〇一五) – Raising
Arizona (1986) 抚养亚利桑纳
“大家不是因为你是女性,但您不对路。”所以那才是平整存在的意思吗……没有特权,无论孩子,重视个人,反对集群,赢得公平。
……还有真是地位决定选取啊。
第七集 Rick时事电台 Rixty Minutes (03/17/二〇一六) – Sixty Minutes (一九七〇)
60分钟时事杂志 (不确定)
莫明其妙想到了“无姓之人”啊……你并不是独一无二,你的另3个取舍把您领向优质的人生……但完美总会改变,人总会借由抽象,把本人抬高到不可能到达的地方。
第十集 从Rick界来的 Something Ricked This Way Comes (03/24/二〇一六) –
Something Wicked This Way Comes (1985) 从魔界来的

原安插中《瑞克和莫蒂》是每集11秒钟的迷你剧,就好像《探险时光》那样。但Adult
Swim提议做成半钟头左右,于是主人公被授予了家中背景,Rick成了Morty的三叔,其余家庭成员也参预到剧情中。制作人之一的丹·哈萌形容那部剧集就好像《Simpson一家》和《飞出个将来》的相濡以沫(但口味显然要重上很多哟)。实际上《Simpson一家》第三6季片头就有《瑞克和莫蒂》客串。

私下的传说

在九酷音乐网发现了一级好听的音乐,可惜手提式有线电话机上广播不了。(http://www.9ku.com/yingwen/jiezou.htm)想用程序做一个app去抓取这一个歌曲,可是考虑到要求时日先不做啊。那里先来个不难的达成,直接微博云搜索对应的歌曲,点击就足以播放。先记下来吗。

package linux.fun.music;

import android.app.Activity;
import android.os.Bundle;
import android.text.TextUtils;
import android.util.Log;
import android.view.View;
import android.widget.Button;

import org.jsoup.Jsoup;
import org.jsoup.nodes.Document;
import org.jsoup.select.Elements;

public class MainActivity extends Activity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        Button findsongButton = (Button) findViewById(R.id.findsong);
        findsongButton.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
               new Thread(){
                   @Override
                   public void run() {
                       findSongName();
                   }
               }.start();
            }
        });


    }

    public void findSongName() {
        try {
            Document doc = Jsoup.connect("http://www.9ku.com/yingwen/jiezou.htm").get();
            Elements songName_a = doc.select("a.songName");
            StringBuffer stringBuffer = new StringBuffer();
            stringBuffer.append("\r\n");
            for (int i = 255; i < 284; i++) {
                String songName = songName_a.get(i).text();
                songName=songName.replaceAll(" ","_");
//                Log.i("xxxxx", "编号"+i + "歌曲名" + songName);
//                https://music.163.com/#/search/m/?s=burning&type=1   这是电脑版的搜索、手机上打开会提示去下载app
//                http://music.163.com/m/    这就是手机端的搜素

//                [首页-简书](http://www.jianshu.com)
                if(!TextUtils.isEmpty(songName)){
                    stringBuffer.append("[");
                    stringBuffer.append(i+" "+songName);
                    stringBuffer.append("](");
                    String url="https://music.163.com/#/search/m/?s=" + songName + "&type=1";
                    stringBuffer.append(url);
                    stringBuffer.append(")\r\n");
                }
            }
            Log.i("xxxxx", stringBuffer.toString());
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public void testdemo() {

        try {
            //还是一样先从一个URL加载一个Document对象。
            Document doc = Jsoup.connect("http://home.meishichina.com/show-top-type-recipe.html").get();

            //“椒麻鸡”和它对应的图片都在<div class="pic">中
            Elements titleAndPic = doc.select("div.pic");
            //使用Element.select(String selector)查找元素,使用Node.attr(String key)方法取得一个属性的值
            Log.i("mytag", "title:" + titleAndPic.get(1).select("a").attr("title") + "pic:" + titleAndPic.get(1).select("a").select("img").attr("data-src"));

            //所需链接在<div class="detail">中的<a>标签里面
            Elements url = doc.select("div.detail").select("a");
            Log.i("mytag", "url:" + url.get(1).attr("href"));

            //原料在<p class="subcontent">中
            Elements burden = doc.select("p.subcontent");
            //对于一个元素中的文本,可以使用Element.text()方法
            Log.i("mytag", "burden:" + burden.get(1).text());

        } catch (Exception e) {
            e.printStackTrace();
        }

/*    
        链接:https://www.jianshu.com/p/a620a2664f58
*/
    }


}

第柒集 第Rick类接触 Close Rick-counters of the Rick Kind – (TBA) – Close
Encounters of the Third Kind (1979) 第①类接触
又是超神的一集……平行世界最为大概命如草芥,羁绊不妨选择,权力也能够交流。

365bet亚洲官方投注 1

第九一集 派对也疯狂 Ricksy Business (TBA) – Risky Business (1985)
乖仔也疯狂
当成看你们亲昵够了……

《Simpson一家》中的客串

© 本文版权归作者  死生不计
 全体,任何款式转发请联系小编。

就算Rick的原型是《回到今后》中的大学生,但制作人已昭然若揭表示不会在剧中涉及时间旅行的始末,因为那种情节已经用烂了并且很简单导致混乱。取而代之的是剧中对于平行空间的神级运用。Rick的Portal
Gun能够通往任意二个平行宇宙,能够说是便携版虫洞。Portal
Gun的形态就好像游戏《传送门》中的道具,功效则比美哆啦A梦的任意门。其余顺便吐槽一下在切实可行中创立一个虫洞越发是跨次元虫洞需求的能量是毁天灭地级其余,Rick居然用一把枪就化解了,几乎天才。难怪第③季一开首外星际缔盟邦急着从他身上套出创设那把枪的艺术。第叁集中一处致敬是最终Rick和Morty用来逃回地球的传递装置,其形象取自《星际之门》。

365bet亚洲官方投注 2

《瑞克和莫蒂》碰上《回到以后》

其次集标题《Lawnmower Dog》乃是取自一部1993年的老清宫戏《The Lawnmower
Man》。那部影片讲述了三个灵气有欠缺的割草工人在接受科学实验后智力大增,但也出现暴力倾向,稳步失控的传说。那样的剧情也令人回顾《献给阿尔吉侬的花束》。别的国影片中家狗统治地球的场景差不多便是《人猿星球》的翻版。

第叁汇聚还有很多对经典文章的影射,比如进入导师梦境中的设定就径直借Rick之口说出是在恶搞《盗梦空间》。当中一层梦境的淫乱party里带着面具的外人借用自电影《大开眼戒》,最终一层恶梦中的scary
terry则是戏仿《猛鬼街》里的Frye迪。而这一集尾声Rick提到的属于狗的自然界则是在影射Justin·罗兰在此以前一部动画片《Dog
World》。那自然是为剧集制作的试播集,后来陈设被砍,其宗旨曲直接挪用到了《瑞克和莫蒂》里面。

365bet亚洲官方投注 3

其三集标题《Anatomy
Park》(人体公园)是恶搞《侏罗纪公园》。其余裁减进入肉体的新意取自一部一九六七年的古装戏《神奇旅程
Fantastic
Voyage》,讲述美利坚合营国医务职员减少后跻身苏维埃社会主义共和国联盟化学家体内进行血管手术的遗闻。人体公园里的广大玩耍设施都以在戏仿迪士尼核心公园里的项目,像“白令海盗”之类。在那之中最明显的正是“小小的小肠”,直接对应“小小世界”。

365bet亚洲官方投注 4

恶搞“苏禄海盗”

第5集的标题《M. Night
Shaym-Aliens》是影射沙马莲监制擅长在影视中插入惊人的反转。本集中的虚构世界是一定经典的科学幻想概念,从《神经漫游者》到《攻壳机动队》乃至《黑客帝国》一脉相传。伴随着近期V奥迪Q5技术的兴起,恐怕科学幻想中的场景将急迅不再是痴心妄想。其它片中外星人穿的制伏源自《星际迷航》。

365bet亚洲官方投注 5

第5集Rick和Morty在魔幻世界的冒险借鉴自《杰克和豆茎》中的巨人国。起先部分在太空船中蒙受恶灵附体的一亲属影射科学幻想电影《黑洞表面》。那多少个暴走的“有求必应先生”令人联想到不堪人类压迫而起义造反的机器人。片尾彩蛋掩饰国王罪行的始末能够参考《蝙蝠侠:乌黑骑士》。

第肆集的标题《Rick Potion #9》改编自电影《Love Potion No.
9》(浪漫女人香),后者的始末也是爱情药水引发的。Rick将人类变成怪物后的世界称为“柯南伯格世界”,因为大卫·柯南Berg以摄像恶心的肉身变形题材影视著名,比如《变蝇人》。类似的古生物恐怖题材还有《怪形》、《寄生兽》之类。最后Rick和Morty改换次元,在另2个平行宇宙活下来的始末在别的科学幻想文章中也有反映,比如《彗星来的那一夜》,《再生门》。

第⑩集的题目《Raising Gazorpazorp》既能够影射《Raising
Hope》(家有旺财),讲述青少年意外得子将其推抢同时接受父母对其育儿方法的指责,也能够影射《Raising
Arizona》,Nicolas·凯奇主角的绑架富翁孩子便是自身孙子的正剧。片中的外星球馆景,比如革命荒漠和浮动的大型头颅来自一九七三年的反乌托邦科学幻想《扎尔doz》(萨杜斯)。和Morty做爱的老徐熙媛女士(英文名:Barbie Hsu)exy
罗布ot的样子取自《机械战警》。

365bet亚洲官方投注 6

第九集的标题《Rixty Minutes》是恶搞美利哥新闻杂志《60
Minutes》。那集的跨次元电视机基本都以恶搞各个具体中的影视。平行宇宙中杰里被警察追捕的画面是慢速版再次出现当年Simpson案中的追捕场景。

第捌集的题目《Something Ricked This Way
Comes》改编自雷·Brad伯里的随笔《Something Wicked This Way
Comes》(当邪恶来打击)。当中那家商店的称谓来自Stephen·金的同名小说《Needful
Things》,原来的小说中也有恶魔售卖看似神奇的货物来换取顾客的魂魄。Rick还在调戏恶魔时涉嫌了一部经文科学幻想剧《阴阳魔界》。Summer在救恶魔时用的爪子来自一篇盛名的好玩的事《猴爪》,那爪子能够完成您三个希望但是有副效能。后来恶魔做产品发布会时的着装时影射Jobs。

365bet亚洲官方投注 7

第玖集的标题《Close Rick-counters of the Rick
Kind》影射斯PeelBerg的影片《Close Encounters of the Third
Kind》(第壹类接触)。片中的Rick理事委员会是恶搞漫威宇宙中的Reeds理事委员会,也正是神奇四侠中神奇先生的平行个体组成的机关。那些许多Morty组成的掩体是影射科幻随笔《海伯利安》中的悲伤之树。同时也令人想到《黑客帝国》中的人体电池。中间有一段从传送门中飞出的马克杯和台式机来自《怪诞小镇》。至于最终尤其眼罩Morty的反转,有太多种经营典电影有那般的桥段了,比如《相当嫌犯》、《顶级恐惧》。

365bet亚洲官方投注 8

从《怪诞小镇》穿越而来的物品

第9一集的标题《Ricksy Business》是影射汤姆·克Russ的影片《Risky
Business》(乖仔也疯狂)。本集中还有大批量对《泰坦Nick号》的挪用和恶搞。但是这一集内容相对松散,更像是第贰季停止时出场人物一起开的联欢会。

第二季
首先集的标题《A Rickle in Time》改编自科学幻想小说《A Wrinkle in
Time》(时间的皱纹),讲述3个女孩寻找走失的物文学家阿爹的逸事。片中长得像睾丸的四维空间生物其实是取自Stephen·金科学幻想短剧《时间裂缝》中的“time
eater”。这几个漂浮在空虚中的猫正如Rick所说是“薛定谔的猫”,量子物理中的经典概念,处于生死叠加状态的猫。因此引发的一种假说“多世界诠释”,即认可平行宇宙的留存,但健康处境下相互是退相干状态,没有交集。有个别特殊景况,比如片中的时间和空间分歧,使得平行宇宙间保障相干性,能够相互影响。顺便提一下《彗星来的那一夜》的英文片名正是“相干性”(coherence)。

365bet亚洲官方投注 9

薛定谔的猫

第2集的标题《Mortynight Run》是恶搞《Midnight
Run》(上午狂奔),罗Bert·德尼罗主角的作案喜剧。那一团“屁”所引发的幻象受到了美利哥动画片师襄斯Collins的小说《Malice in
Wonderland》的开导。而“屁”的言语格局和唱的歌则是恶搞有名歌唱家大卫·鲍伊。本集中外星城市和海洋生物的筹划在很多地方都和《飞出个现在》很相似。

365bet亚洲官方投注 10

这厮和《飞出个以后》里的卫生工我很像

其三集的标题《Auto Erotic Assimilation》是英文“Autoerotic
asphyxiation”(窒息式性爱)的谐音,同时assimilation有“同化”之意,那么些标题也足以暗指Unity同化一星球的人和Rick搞淫乱party。这一集也发布了Rick是个泛性恋。Rick地下实验室的1个试管中有形似克苏鲁的初始。Unity为Rick创作的电视机剧集是在影射发行人之一丹·哈萌的《废柴结盟》。初步Rick说抱脸虫比整艘飞船都值钱显然是在吐槽《异形》。

365bet亚洲官方投注 11

疑似克苏鲁的胚胎

第伍集的标题《Total Rickall》是恶搞古装戏《Total
Recall》,讲述和纪念移植和伪造相关的轶事,有新老七个版本。(个人认为这是具有双关语标题中最好的贰个,形神兼备)本集吐槽了豪门都误以为“Fran肯Stan”是怪物的名字,其实那是创立怪物的大学生的名字,原版的书文中的怪物没盛名字。这一汇聚的寄生虫其实是Rick从第叁集带回来的外星水果上面包车型大巴,两者都长着粉黄绿突起。那个以假乱真的回想拾贰分近乎《Family
Guy》中的cutaway
gags,即突然插入一段与主线毫无干系且很恐怕是冒充的剧情。Rick实验室中的这些武器有为数不少仿照了二十10日游《光晕》。

365bet亚洲官方投注 12

一般《光晕》中的武器

第⑥集的标题《Get Schwifty》,字典上对“schwifty”的解释是Getting crazy
horny at parties and/orclubs, usually while extremely high. Typically
involves taking off your pants and your panties.
大意正是在趴体上玩嗨了接下来把胖次脱了下来。总统开会那一段的情形大概是戏仿《奇爱硕士》。其余本集狂黑宗教,Rick在在此以前剧集中已明朗突显为无神论者。

第5集的标题《The Ricks Must Be Crazy》改编自清宫戏《The Gods Must Be
Crazy》(上帝也疯狂),讲述北美洲本地人捡到手提式有线电话机后的搞笑逸事。这一集层层嵌套的组织类似影片《异次元骇客》,当然也能够联想到《黑衣人》结尾,大家的宇宙空间未必不是更大世界中的一粒尘埃。迷你宇宙中的景象模仿了设计师Frank·L·赖特的头面规划“流水豪宅”。Rick说要把Morty变成一辆车的对话大概是取自86年的《变形金刚大电影》中的一段类似内容。

365bet亚洲官方投注 13

效仿出名规划“流水豪宅”

第10集的标题《Big Trouble in Little
Sanchez》是恶搞John·卡朋特的正剧《Big Trouble in Little
China》(妖精大闹唐人街)。杰里脑中的Beth形象是人云亦云异形女帝。在里面一幕的扫描仪上得以看看《怪诞小镇》中的反派BillCipher。这一集中还有为数不少和寄生虫有关的梗,从范海辛到诺斯费拉图,精通的人应该能够看出来。至于Rick变年轻那样的剧情在任何影片中已是司空眼惯了,从《重临十柒周岁》到《奇怪的他》,然则那一遍是运用科技(science and technology)手段而不是怪异道具。

365bet亚洲官方投注 14

第柒集基本上正是种种恶俗桥段的大荟萃,预计看过的小伙伴都没法儿专心瑞典王国肉丸了。

第⑨集的标题《Look Who’s Purging Now》是在戏仿正剧《Look Who’s Talking
Now》(飞越童真),涉及会说话的动物,正如本集中外星居民都是猫或狗。本集的完全情节则是取自科学幻想恐怖片《The
Purge》(人类解决布置)。Rick的战甲很像钢铁侠,胸口的三角还表达那是升格后的本子。最终全数材质被干掉也能令人联想到《王牌特务工作人士》的末梢。

第七集的标题《The Wedding Squanchers》是在影射正剧《The Wedding
Crashers》(婚礼傲客)。Squanchy先生喝下牙齿里的暗褐药水变身的设定和娱乐Skylander里的Pop
Fizz很像。Rick一家避难的小行星有没有让你回看《小王子》?最终Rick纪念过去的拾贰分酒吧设计很像《星球大战》,而Rick自首的始末则是模拟《绝命毒师》的内部一集“格拉尼特e
State”。

365bet亚洲官方投注 15

Rick自首的始末类似《绝命毒师》

上述就是选出来的可比首要和有趣的借鉴与致敬,想打听越多的可以上Rick and
Morty Wikia查询只怕看一下那多个视频
Every Reference In Rick and Morty – Season 1

Every Reference In Rick and Morty – Season 2

末尾说一下,科学幻想发展到最近,差不多所以你能体会通晓的症结都早有人提出过,而且里面包车型大巴大部分还都被玩烂了。关键在于怎么着将各样概念整合起来并赋予巧妙的教导和进步,创建出令人面目一新的著述。《瑞克和莫蒂》中的超越八分之四设定其实都不可能算新鲜,但能够把那样密集的设定凑在一起,并将每贰个的潜力都发表到极致,再加上各个反讽与恶趣味使其更显癫狂,最后还是能够把旧事说圆,还能够吸引观者的少数触动与思维,那就只好钦佩编剧的功力了。每部文章都有温馨的一定,《瑞克和莫蒂》自然不像《星际迷航》和《攻壳机动队》这样具有空前的开拓性意义,也无意于用庄敬的态势和精心的设定开始展览前瞻性思考。那部神剧更像是《神秘大学生》那样借科学幻想的外衣来发表人性和反思社会现状。而且动画的款式进一步与天马行空的想象力完美贴合,并打响逃脱了真人小说因技术和资金不足导致的违和感,再添加成人向设定使得在剧情表现上百无禁忌,观者的观剧体验自然是纵情淋漓。倘使说有个别佳作如《星际牛仔》和《攻壳》像清酒要稳步品,那么看《瑞克和莫蒂》就好像嗑药,让您即刻嗨。

© 本文版权归笔者 
Gabrielfan
 全数,任何情势转发请联系小编。

相关文章